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Chapter 1

INTRODUCTION

1.1 Descriptive Definition

Mesometeorology encompasses the study of phenomena that possess characteristic time and/or
horizontal space scales that are intermediate between macro- (≥ 2 days, ≥ 2000 km) and micro-
(≤ 20 mins, ≤ 2 km) scale systems.

The distribution of an assemblage of atmospheric circulation systems, in terms of their
characteristic time (T) and horizontal space scale (L) is shown in Table 1.1 (Caveats: an atmo-
spheric phenomenon often exhibits considerable variability from event to event, systems are often
anisotropic in the horizontal, the local and the advective time scales need not be comparable.)

1.2 Range of Mesoscale systems

A wide and disparate range of phenomena fall into the mesoscale category. For instance Me-
someteorology embraces the study of:

• internal thermal transition zones with L≈ 2 and 200 km

• destructive wind systems with L≈2, 20 and 200 km.

The understanding, prediction (and perhaps the modification) of the rich diversity of systems
on this scale constitutes the distinctive challenge of Mesometeorology.

In view of this large range of phenomena a further subdivision might prove helpful. One
suggested scheme (- defined in terms of the characteristic horizontal length scale) is indicated
in Table 1.1.

A list of some distinctive mesoscale phenomena is appended here:

Meso-α: Surface and upper-level fronts; jet stream features; frontal wave families; hurricanes;

Meso-β: Squall lines and severe storms; sea, lake and land breezes; heat islands; mountain wave
disturbances; Fohn; low-level nocturnal jets; cloud clusters;

Meso-γ: Lee waves; clear-air turbulence and billows; cloud bands and arcs; slope winds.
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Table 1.1: Einteilung atmosphärischer Phänomene nach ihren charakteristischen
Längenabmessungen und ihrer Zeitdauer (nach Orlanski, 1975)

Ts 1 MONAT 1 TAG 1 STUNDE 1 MINUTE 1 SEKUNDE
Ls

10 000
km

Allgemeine

Zirkulation,

Lange

Wellen

MAKRO-
SKALAα

2 000
km

Barokline

Wellen

MAKRO-
SKALAβ

200
km

Fronten,

Tropi-

sche

Zyklonen

MESO-
SKALAα

20
km

Orogra-

phische

Effekte,

LandSee-

Wind,

Wolken-

haufen

MESO-
SKALAβ

2
km

Gewitter,

Interne

Schwere

Wellen,

Urbane

Wärme-

insel

MESO-
SKALA γ

200
m

Torna-

dos,

Kon-

vektion

MIKRO-
SKALAα

20
m

Staub-

tromben,

Thermik

MIKRO-
SKALAβ

Kleinräu-

mige

Turbulenz

MIKRO-
SKALA γ

MAKROSKALA MESOSKALA MIKROSKALA
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1.3 Remarks on the Nature of Mesoscale Systems

• Several physical processes can play a significant role within a single mesoscale system
e.g. during the development of a sea-breeze circulation the following processes can act se-
quentially: radiation, conduction, dry convection / turbulent transport, thermally induced
horizontal pressure gradients, pressure gradient induced winds, thermal overturning and
moist convection, Coriolis induced wind turning.

• The relative importance of individual processes can differ substantially from one kind of
system to another (e.g. condensational effects) and even from one-event-to-another of the
same system.

• Mesoscale systems can be both embedded within a macroscale system and contain within
their circulation pattern one, or several types of, smaller scale phenomena. An important
repercussion is that mesoscale systems can be influenced by, and interact with, both larger
and smaller scale flow systems.

Thus mesoscale phenomena can exhibit an interplay of several physical processes, an inter-
dependence and co-existence of various scales.

1.4 On the Origin of Mesoscale Systems

• Terrain variations (e.g. orography, surface characteristics) possessing mesoscale spatial di-
mensions can provide a direct forcing of the atmosphere on this scale. (External mesoscale
forcing.)

• Synoptic scale flow features could develop a mesoscale structure (internal macro-scale
forcing).

• Synoptic scale could provide suitable setting for the development of free mesoscale flow
systems (Mesoscale instabilities).

• Interaction of two mesoscale systems could generate a third mesoscale system (internal
mesoscale forcing).

• Ensemble effect of smaller scale systems could interact synergetically to yield a mesoscale
system (internal micro-scale forcing).

One approach to mesoscale studies (- and the one followed here) is to establish a classification
of mesoscale phenomena based on the above categories. (Caveat: certain phenomena might be
the result of the interaction of phenomena from different categories.)

1.5 The Observation of Mesoscale Systems

An adequate description of a mesoscale circulation requires (by definition) a knowledge of the
atmosphere on a space scale that is less than that definable with the standard radiosonde net-
work and greater than that sampled with the customary range of in-situ sensors at a single
station. It is worth noting that most of the ’significant’ weather occurs in conjunction with
mesoscale systems and can often remain undetected within the conventional synoptic-scale net-
work (L≥ 400 km , T≈ 12 hrs).
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In recent years a state of new mesoscale-related observational tools have become available for
research and/or operational use, and numerous other techniques are in the development phase.
For example many weather services now have available to them on a quasi-continuous, real-time
basis:

• mesoscale (space and time) networks of automatic surface sampling stations,

• mesoscale digitalised displays from arrays of conventional radar,

• fine resolution ’visible’ and ’IR’ satellite imagery.

Recent development in Doppler radar technology (clear air, polarization diversity, etc), Li-
dar (incoherent and coherent pulsed systems), refined satellite based temperature and humidity
profiling, and ground based quasi-continuous wind profiling all represent future potentially oper-
ational systems. In addition research aircraft flights, instrumented masts and tethered balloons
are other important research tools.

Research studies of particular phenomena require as a central component the undertaking
of a field experiment. The design of a comprehensive and systematic observational programme
poses a formidable scientific, logistic, instrumental and economic challenge. Thus considerable
forethought must be exercised in establishing the precise scientific objectives, in specifying the
observational requirements, and in the choice and deployment of observational tools.



Chapter 2

BASIC THEORETICAL
CONSIDERATIONS

2.1 Scale Analysis

Here we follow the procedure outlined earlier (Atmosphärenphysik II) and undertake a scale
analysis of the basic governing equations for certain individual phenomena. This exercise serves
two related purposes. It yields estimates of the order of magnitude of the various terms in
each of the equations and concomitantly provides some justification for discarding terms whose
relative magnitude is small.

In Table 2.1 characteristic values have been assigned for the field variables for a range of
circulation systems (viz. baroclinic waves, fronts, low-level jets, clear-air-turbulence and isolated
convective plume, - corresponding respectively to macro-β, meso-α, β, γ and micro-α scales).
Caveat: the values at a given scale do not necessarily typify all phenomena at that scale.

The results of the procedure are shown in Table 2.2i-v). It appears reasonable to conclude
that for the mesoscale systems considered:

• earth’s sphericity and the β-effect are not significant,

• Coriolis effect is such that Ro ∼ 1, (> 1, � 1) for respectively meso-α (-β, -γ) systems,

• mesoscale density and potential temperature fluctuations are directly related (ρ∗/ρ0 ≈
Θ∗/Θ0),

• compressibility effects are secondary and enter only via the mean state density variation,

• non-hydrostatic effects become significant on the meso-γ scale.

Note that the scale analysis procedure emphasizes the intermediate nature of the mesoscale
from another standpoint - within the mesoscale several dimensionless parameters (e.g. Ro, D/H,
UT/L) traverse near the value of unity.

2.2 The Anelastic System

It also follows from the result displayed in Table 2.2 that the dynamics of the entire mesoscale
should be reasonably represented by the following set of equations - the Anelastic Equations -,
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Du

Dt
− fv = −

∂

∂x

(

p∗

ρ0

)

Dv

Dt
+ fu = −

∂

∂y
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p∗

ρ0
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)

+ g
Θ∗

Θ0

∂u

∂x
+

∂v

∂y
+

(

∂

∂z
−

1

κ
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1
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·
DΘ∗
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=

1

cpT
Q

ρ∗

ρ0
= −

Θ∗
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(2.1)

where:
D

Dt
=

{

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

}

(2.2)

with:

κ−1 =
1

ρ0
·
∂ρ0

∂z
(2.3)

and δ is a dummy variable such that δ = (0, 1) refers respectively to hydrostatic and non-
hydrostatic flow systems and Q refers to the diabatic heating. This set has a much simpler form
than the original full set - it represents the flow of an inviscid, almost-incompressible fluid on
an f -plane. For individual phenomena it is clear that it can be simplified further.

The reduced system satisfies an appropriate energy relationship. With Q ≡ 0 and with the
isentropic base state (Θ0 ≡ constant), then it can be shown that within a closed (or periodic)
domain V:

∂

∂t

∫ ∫ ∫

V

{

1

2
ρ0(u

2 + v2 + δw2) −

(

ρ0
g

Θ0

)

Θ∗ · z

}

dV ≡ 0 (2.4)

i.e. system satisfies an energy conservation principle, and the energy integral comprises the
sum of a kinetic energy, 1/2ρ0(u

2 + v2 + δw2), and a pseudo-potential energy, (ρ0 · g/Θ0)Θ
∗ · z.

There is no explicit reference to internal or elastic energy in the integral invariant and hence the
name - anelastic equations.

Note that the ratio of the two terms yield another dimensionless parameter - the Froude
Number (F ) or its inverse F , where,

F = U/NH, or F = F−1 = NH/U (2.5)

(here we have chosen the representation g/Θ0 · Θ∗z ≈ N2H2.) Hence this number relates to
the ratio of the kinetic energy to the work required (or the potential energy change) in raising
a fluid element a distance H in an uniformly stratified atmosphere.
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Table 2.1: Some order of magnitude estimates of the characteristic values of atmospheric vari-
ables.

Scale of
System

Time Length Scales Velocity Fields Thermodynamic Fields

Horizontal Vertical Horizontal Vertical Scaled pressure Pot. Temp.

[T ] s [L] m [D] m [U,∆U ] m/s [W,∆W ] m/s [∆p∗/ρ0] m2/s2 [∆Θ∗] K

Macro-β 105 106 104 10 ≤ 10−2 103 4

Meso-α 105 105 5 · 103 10 ≤ 5 · 10−2 2 · 102 2
Meso-β 104 5 · 104 3 · 103 10 ≤ 10−1 2 · 102 2
Meso-γ 103 5 · 103 103 10 1 102 2

Micro-α 5 · 102 103 5 · 103 1 3 10 10−1

Table 2.2: Scale Analysis of the Basic Equations

i) Eastwards horizontal momentum equation:

Du/Dt f0 · v (βy) · v e · w u · w/a uv · tanφ/a 1/ρ · ∂p/∂x
[U/T,U 2/L,UW/D]max [foU ] [4βLU ] [eW ] [UW/a] [U 2/a] [∆p∗/ρ0L]

Macro-β 10−4 10−3 10−4 10−6 10−8 10−5 10−3

Meso-α 10−3 10−3 10−4 5 · 10−6 10−7 10−5 10−3

Meso-β 5 · 10−3 10−3 10−5 10−7 10−5 4 · 10−3

Meso-γ 10−2 10−3 5 · 10−4 10−6 10−5 10−2

Micro-α 10−2 10−4 10−4 10−6 10−7 10−2

ii) Modified gas equation:

ρ∗/ρ0 1/c2 · p∗/ρ0 Θ∗/Θ0

Macro-β - 10−2 10−2

Meso-α - 10−3 10−2

Meso-β - 10−3 10−2

Meso-γ - 10−3 10−2

Micro-α - 10−4 10−3

iii) Thermodynamic equation:

1/Θ0 · DhΘ∗/Dt w · 1/Θ0 · ∂Θ0/∂z w · 1/Θ0 · ∂Θ∗/∂z q/cpT0

Macro-β 10−7 w · 10−5 w · 10−6 4(n) · 10−8

Meso-α 10−6 w · 10−5 w · 10−6

Meso-β 10−6 w · 10−5 w · 10−6

Meso-γ 10−5 w · 10−5 w · 10−5

Micro-α 10−5 w · 10−5 w · 10−5
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iv) Mass conservation equation:

1/ρ0 · Dhρ∗/Dt w · S ∂w/∂z ∇h · vh

[∆ρ∗/ρ0T,∆ρ∗/ρ0 · U/L]max [W · S] [W/D] ≤ [U/L]

Macro-β 10−7 10−6 10−6

Meso-α 10−6 5 · 10−6 10−5

Meso-β 10−6 10−5 10−5

Meso-γ 3 · 10−5 10−4 10−3

Micro-α 10−6 10−4 10−3

v) Vertical momentum equation:

Dw/Dt e · u (u2 + v2)/a (∂/∂z − N 2/g) · p∗/ρ0 g · Θ∗/Θ0

[W/T,UW/L,W 2/D]max [e · U ] [U 2/a] [∆p∗/ρ0D] [∆p∗/ρ0 · N
2/g] [g · ∆Θ∗/Θ0]

Macro-β 10−7 10−3 10−5 10−1 10−2 10−1

Meso-α 10−6 10−3 10−5 4 · 10−2 10−3 4 · 10−2

Meso-β 10−5 10−3 10−5 6 · 10−2 10−3 6 · 10−2

Meso-γ 10−2 10−3 10−5 3 · 10−2 10−3 4 · 10−2

Micro-α 10−3 10−4 10−7 2 · 10−3 10−3 10−3
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Figure 2.1: Along and Across front coordinate system

2.3 The Semi-Geostrophic System

The set of equations represented by the anelastic system is appropriate for most mesoscale cir-
culation systems. There is an even simpler set that is intermediate between the anelastic set
and the conventional quasi-geostrophic system.

A rationale for this set can be illustrated as follows:

Consider a flow pattern that is horizontally anisotropic (e. g. a front, see Fig. 2.1), and
has characteristic spatial and velocity scales such that (U/V ) � 1, (1/L) � 1, with
(U/V )(1/L)−1 ≈ 1.

Then scaling arguments can be introduced to indicate that

∥

∥

∥

∥

(

Du

Dt

)

/fv

∥

∥

∥

∥

≈ (U/fL) = Racross (2.6)
∥

∥

∥

∥

(

Dv

Dt

)

/fu

∥

∥

∥

∥

≈ (V/fl) = Ralong (2.7)

where Racross and Ralong denote respectively across and along front Rossby Numbers. If, for
a given flow system, Racross � Ralong ≤ 1, then it would be appropriate to neglect the Du/Dt
term in Equations (2.1) and assume geostrophy for the velocity component in the elongated
direction, i.e. assume the system is semi-geostrophic.

A further extension of this procedure is the geostrophic momentum approximation. In this
limit the advective operator, D/Dt, in the set of Equations (2.1) is replaced as follows,

D

Dt
(u, v, w,Θ∗) ⇒

{

∂

∂t
+ (uG + ua)

∂

∂x
+ (vG + va)

∂

∂y

}

(u, v, w,Θ∗) (2.8)

where on the right hand side (u, v) = (uG + ua, vG + va) and (uG, vG) and (ua, va) refer
respectively to the geostrophic and ageostrophic velocities. Both the semi-geostrophic and the
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geostrophic momentum sets possess appropriate integral relationships.

2.4 Free Oscillations of the Anelastic System

An examination of the small amplitude free oscillations that the Anelastic System can sustain
will yield

• the detailed wave properties of the linearized system,

• insight on the nature of the system (incl. it likely response to external forcing),

• starting point for the understanding of the more complex and/or non-linear flow configu-
rations.

Now we apply the standard perturbation technique. In addition to the χ = {χ0(z) + χ∗}
decomposition of the field variables (where the zero subscript refers to an isentropic state of
the motion), the χ∗ field is further separated into unperturbed and perturbed components, i. e.
χ∗ = χ̄ + χ′, with ||χ′|| � χ̄.

The unperturbed state is taken to be an uniformly stratified atmosphere
(N2 = g/Θ0 · dΘ̄/dz = const) in uniform motion, U , i. e.

−→
v∗ = (U, 0, 0) + (u′, v′, w′) (2.9)

(Θ∗, p∗) = [θ̄(z), p̄(z) + (Θ′, p′)], (2.10)

with

fU = −
∂

∂y

(

p̄

ρ0

)

(2.11)

The linearized equations for the perturbation variables take the form,

L u′ − fv′ = −

(

p′

ρ0

)

x

(2.12)

L v′ + fu′ = −

(

p′

ρ0

)

y

(2.13)

L w′ = −

(

p′

ρ0

)

z

+ b′ (2.14)

u′

x + v′y + w′

z −
1

H
w′ = 0 (2.15)

L b′ + N2w′ = 0 (2.16)

where L refers to the advective operator (L = ∂/∂t + U∂/∂x), H to the scale height,
(H = 1/ρ0 · ∂ρ0/∂z) and the expression for the buoyancy, b′ is given by: b′ = g Θ′

Θ0
.

The above set can be reduced to a single equation for the perturbation vertical velocity (w’):



2.4. FREE OSCILLATIONS OF THE ANELASTIC SYSTEM 11

First derive expressions for the time rate of change of the horizontal divergence (D ′ = u′

x+v′y)
and the vertical component of the vorticity, (ζ = v ′

x − u′

y). These take the form,

L D′ − fζ ′ = −∇2
h

(

p′

ρ0

)

, (2.17)

and L ζ ′ − fD′ = 0. (2.18)

Eliminating between these two equations yields

(

L
2 + f2

)

D′ = −∇2
hL

(

p′

ρ0

)

(2.19)

Using sequentially the continuity and vertical momentum equations gives

(

L
2 + f2

)

(

∂

∂z
−

1

H

)

w′ = ∇2
hL

(

p′

ρ0

)

(2.20)

∂

∂z

(

L
2 + f2

)

(

∂

∂z
−

1

H

)

w′ = L∇2
h

[

−δL 2w′ + b′
]

(2.21)

= −
[

δL 2 + N2
]

∇2
hw′ (2.22)

(

L
2 + f2

) ∂

∂z

(

∂

∂z
−

1

H

)

w′ +
(

δL 2 + N2
)

∇2
hw′ = 0 (2.23)

This is a partial differential equation with constant coefficients (f,H and N 2 are constant),
and it is appropriate to seek solutions of the form

w′ = W (z)ei(kx+ly−wt) (2.24)

This leads to the relationship

Wzz −
1

H
Wz + n2W = 0, (2.25)

where n2 =
(N2 − δω̃2)

(ω̃2 − f2)
K2, (2.26)

with ω̃ = (ω − kU) and K2 = k2 + l2 (2.27)

On introducing the variable χ(z) = W e−z/2H , this equation transforms into the compact
form,

χzz +

(

n2 −
1

4H2

)

χ = 0 (2.28)

It follows that the vertical structure of the perturbations depend crucially upon the value of
the parameter λ2 = n2 − 1/(4H2).

The structure is - exponential for λ2 < 0,
- oscillatory for λ2 > 0.
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In the former case the perturbations can satisfy a ’zero’ - boundary condition at only one
level, and are therefore termed external waves. In the latter case such a condition can be satis-
fied at two levels and the waves are termed internal.

A dispersion diagram showing the internal and external wave regimes in the parameter space
of (K̃, ω̃) is shown in Fig. 2.3. Cross reference with Table 1.1 indicates that there is a quali-
tative correspondence between the region of parameter space occupied by observed mesoscale
phenomena and the region occupied by waves for which ‖λ̃2‖ ≈ (2π)2 − (20π)2 i. e. waves with
a vertical wavelength (or e−1 folding distance) that is of the order of, or a significant fraction of
the tropospheric depth.

The dispersion relationship,

ω̃2 =
N2K2 + n2f2

δK2 + n2
(2.29)

indicates that:

• the waves owe their existence to the earths rotation (f) and the vertical stratification (N).
Hence the term “inertia-buoyancy waves”,

• the omission of the β-effect excludes the occurrence of Rossby waves, and the anelastic
form of the mass conservation relationship also excludes acoustic waves,

• internal waves (- and hence vertical propagation effects) can occur in a wedge-shaped
region of the (K̃, ω̃) domain within the frequency band f →∼ N (see Fig. 2.2).

Note the following three limit forms of the dispersion relationship:

- hydrostatic, rotating system, ω̃2 = N2(K/n)2 + f2 (a)
- hydrostatic, non-rotating system, ω̃2 = N2(K/n)2 (b)
- nonhydrostatic, non-rotating system, ω̃2 = N2K2/(K2 + n2) (c)

These three forms provide, between them, a good approximation to the full relationship
across the entire internal-wave domain.

Another illuminating viewpoint from which to examine the dispersion relationship is to set
ω̃2 = U2k2 (i. e. to consider steady state systems). In this case we can determine n2 = n2(k, l)
for given values of the parameters N, f, U . The result is shown in Fig. 2.2. An internal wave
regime exists within the wavenumber band {S → Ro}, where S = Uk/N and Ro = Uk/f.

Finally we recall that the concept of “Group velocity” can also be utilized to interpret the
wave-response of the atmosphere to a localized forcing. In this context note that the perturbation
vertical velocity of an internal wave is given by,

w′ = χ(z)ez/2Hei(kx+ly−wt) = A eiφ (2.30)

so that (A , φ) = Amplitude, phase. Furthermore, if λ̃2 � 1/4 i.e. vertical wavelength ΛD �
80 km), then λ ∼ n. In this limit compressibility effects do not influence the vertical wavelength.
Hence in this simplified, but realistic, situation the phase and group velocities are given by

(up, vp, wp) =

(

ω

k
,
ω

l
,
ω

n

)

, (2.31)

(ug, vg, wg) =

(

∂ω

∂k
,
∂ω

∂l
,
∂ω

∂n

)

. (2.32)
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Figure 2.2: Vertical wave-structure as a function of horizontal wavenumber

Depiction of vertical wave-structure as a function of horizontal wavenumber. Let (n, k, l)
refer to the vertical and horizontal wavenumbers, and K = (k2 + l2)1/2.

Relationship for the vertical wave-structure,

n2 =
N2 − δω̃2

ω̃2 − f2
K2 ⇒ n2 =

N2 − U2k2

U2k2 − f2
K2, for w = 0 (2.33)

Hence
(

n2

K2

)

=

(

N2

f2

)

1 − S2

Ro2 − 1
, with S = Uk/N , Ro = Uk/f (2.34)
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Figure 2.3: Dispersion diagram for the mesoscale.

Dispersion Relationship:

ω̃2 =
N2K̃2 + ñ2f2

[

δK̃2 + ñ2
] (2.35)

with:
λ̃2 = (ñ2 − 1/4), (λ̃, ñ, K̃) = (λ, n,K)H , (2.36)

Values used in computation:

N2 = 1.44 · 10−4 s−1, f = 10−4 s−1,H = 104m (2.37)

and the vertical wavelength, ΛD, such that ΛD = 2π/λ.

Thus:

Table 2.3: Numerical values for wavelengths vs. wavenumbers.

λ̃ 0.2 · π 2 · π 20 · π 200 · π

ΛD[km] 100 10 1 0.1
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Part II: TERRAIN INDUCED SYSTEMS

A schematic sub-division of terrain induced mesoscale systems is shown in Fig 2.4.

In this scheme mesoscale terrain phenomena are split into those that are evident during
quiescent or quasi-steady synoptic settings and those present during periods of active synoptic
scale activity.

Orographic
effects

Non-
orographic

Terain
Effects

Quiescent or
steady

synoptic setting

In-situ
modification
of incident

system

Generation
of other

flow systems

Active or highly
transient

synoptic setting

Mesoscale Terrain
Effects

Figure 2.4: Mesoscale terrain phenomena split if occurring during steady or transient synoptic
activity.

From a didactic standpoint it is appropriate to first consider the former category. The study
of such systems forms the subject matter of PART II, and a discussion of some phenomena that
fall into the latter category is presented in a later Chapter.
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Chapter 3

OROGRAPHICALLY INDUCED
SYSTEMS - MECHANICAL
EFFECTS

Phenomena that are classifiable as orographically induced systems are attributable to two dis-
tinct (but not necessarily separable) forms of external mesoscale forcing - a mechanical effect
induced as an airflow impinges upon an orographic feature, and a thermal effect arising from
the differential heating of the atmosphere in the horizontal due to variations in the height of the
terrain. In this chapter we consider the first effect in isolation.

3.1 The Parametric Setting

The mechanical effect of mesoscale orographic feature(s) is responsible for a wide variety of flow
patterns. The nature of the flow response is related to the structure and strength of the incident
airstream and the structure and height of the orography. Consider an uni-directional upstream
flow with v = (U(z), 0, 0), a stratification characterised by N 2 = N2(z), and an isolated oro-
graphic feature with characteristic half-width (L,M) and height η.

Figure 3.1: Wind and Potential Temperature profiles prior of impinging on a elliptical mountain,
with semi-major axis M , semi-minor axis L and of height η0.
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Some key dimensionless numbers for this problem are:

Ro =
(

Ũ
fL

)

- Rossby Number based upon mountain half-width,

F =
(

Ñη0

Ũ

)

- inverse Froude Number based upon mountain height,

S =
(

ÑL
Ũ

)

- Scorer Parameter (c.f. also Appendix I),

An = L/M - horizontal anisotropy of mountain,

As = η0/Ũ - aspect ratio of mountain.

Note that not all these numbers are independent and also that Ũ and Ñ are characteristic
values for U and N .

Moreover if the incident flow is highly structured in the vertical then other parameters can
be significant. For example consider the situation of a strong inversion of strength (∆Θ) in the
upstream flow at a height H. In this case some additional ratios would be:

F =
(

U/(g∗ · H)1/2
)

- Froude Number based upon inversion height,

Ai = (η0/H) - scaled inversion height,
Here g∗ = (g∆Θ/Θ), - the so-called reduced gravity.

The variety of mesoscale orographic configurations is vast. One dynamical measure of the
range of orographic features is illustrated in Fig 3.17. Here various hills and mountains are
located in the parameter space of (Ro, F , An) under the assumption that U = 10ms−1, f0 =
10−4 s−1, and N = 10−2 s−l. (Note that many of these terrain with either an anticyclonic large
scale flow or an advancing features can not be considered as ’isolated’.)

In the subsequent sections we shall consider some of the observed flow responses to elongated
ridges and isolated features with the scales:

• small amplitude, meso-β/γ scale hills (e.g. Albis - Reuss, rolling hills)

• larger amplitude, meso-α/β scale terrain (e.g. Alps)

These descriptive sections are followed by some theoretical considerations of the flow res-
ponse.

3.2 Some Observational Features of Orographic Flows

3.2.1 Small amplitude, meso-β/γ scale hills

a) Elongated ridges with flow at normal incidence:

The spectacular display of a train of delicate lenticular clouds located leeward of a mountain
ridge is an orographically induced phenomenon that is readily noticed by a ground based ob-
server (see Fig. 3.2 and 3.5). The formation of a family of quasi-stationary lee wave clouds, or
the banded clearing of a stratified cloud layer, is visual evidence of a series of oscillatory distur-
bances set up over and to the lee of the mountain. The clouds form as moist air is lifted by the
wave disturbance above its lifting condensation level by the wave disturbance. In essence the air
flows through the region of cloud with the adiabatic cooling due to ascent causing condensation
on the upstream side, whilst evaporation takes place in the descending air at the downstream
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(a) (b)

Figure 3.2: Examples of bands of lenticular clouds that have formed in standing waves to the lee
of a mountain range (a). Pronounced Altocumulus undulatus over the Vorderen Vogelsbergkreis
(b).

Figure 3.3: Cumulus Lenticularis - a remarkable roll cloud over the Sierras Formed by the
Sierra Wave north of Independence, California. Strong updrafts associated with this cloud type.
Photography: Bob Bishop,1952.
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Figure 3.4: A foehn wall along the Lofoten coast (Norway). Note that the cloud is extending
almost down to the sea surface and the presence of an hydraulic jump.

(a) (b)

Figure 3.5: Two further examples of Altocumuli Undulatus. (a) c© by Carol Lakomiak, 2003

cloud boundary. The frequent distinctive iridescence of lenticular clouds in early morning or
late evening (i.e. at low sun-angles) is a corona effect attributable to the comparatively uniform
sized cloud droplets formed in the comparatively laminar airflow (see Fig. 3.6). Lee clouds may
occur simultaneously at different height levels if the incident airstream has several, vertically
separated, moist layers. At low levels the cloud type is often more ragged due to turbulence,
while at high levels the clouds may be composed of ice crystals which often stream downwind
in the airflow. In such a situation, with a multi-deck system of mountain waves in the vertical
a suitably placed observer may be able to detect a pronounced upstream tilt with height of the
wave crest of the system.
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(a)

(b)

(c)

Figure 3.6: Three further illustrations of lenticularis clouds. (a) Pheriche, Khumbu Valley,
Nepal, (b) Manganu, Corsica, France, and (c) Mt Rainer, Rockies.

A general climatology of lee waves with respect to synoptic situations and geographical
location has been inferred in recent years using high resolution satellite imagery and strategically
located radiosonde stations. These studies have demonstrated the ubiquity of this phenomenon
with lee waves occuring on average about one day in three in hilly country at temperate latitudes.
The main climatological characteristics of lee waves are summarised below:

Vertical Stratification: A lower layer of weak, or quasi-neutral, stability extending from the
ground to a height of 1000-2000 m (and occasionally to 4000 m), capped
by an intermediate very stable layer (thickness 500-4000 m), with a fur-
ther layer of weak stability above.

Synoptic Situation: This distinctive vertical structure often occurs in conjunction with either
an anticyclonic large scale flow or an advancing warm front.

Vertical wind profile: Wind speed usually increases with height, but not necessarily uniformly
or consistently. Similar lee wave systems form at approximately the same
location at different periods despite substantial variations in the profile.

and Band Orientation: Bands form parallel to the orography and at some distinctive level that
is related to the orographic height. Also a threshold value of the wind
speed at this level must be attained for band formation.

Lee waves exhibit a range of forms and occur at various scales. Listed below is a general
summary of their typical characteristics:

i) Vertical location: Mostly in the middle or lower troposphere with lenticular altocumuli
in the middle levels, ∼ 6000 − 7000 m and stratocumuli usually in
the 1000 − 1500 m height range. Maximum amplitude of streamlines
observed frequently at the height of the stable layer.

ii) Horizontal wavelength: 8 − 30 km. Observed linear correlation (∼ 0.72) between wavelength
and mean tropospheric wind speed.

iii) Horizontal extent: From 10 − 300 km downwind. Inverse relationship between thickness
of the very stable layer and the horizontal extent.
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iv) Vertical extent: Evidence of wave-activity at great heights above mesa-β scale topo-
graphy even for comparatively small amplitude terrain.

Figure 3.7: Features of air flow across a long mountain range: 1. Downdraught may occur at
some levels to windward of ridge. 2. Strong surface wind down the lee slope. 3. Variable surface
wind. 4. Maximum amplitude in stable layer. 5. Order of wavelengths: 2-20 miles. 6. First
wave crest usually less than one wavelength downstream of ridge. A. Föhnwall. B. Roll cloud.
C. Altocumulus lenticularis. D. Cirrus. λ denotes the ’natural wavelength’ determined by the
airstream wind and temperature conditions and in wave-flow parlance the structure illustrated
is described as a ’three layer’ troposphere.

Characteristics of low-level response:

In addition to the situation where the airflow speeds-up over the terrain achieving a maxi-
mum at the crest, airstreams also often exhibit an asymmetry relative to crest with weak winds
upstream and a strengthening of the downslope winds. At larger values of F (or in the pres-
ence of a well-mixed boundary layer capped by an inversion). The upstream flow is sometimes
severely retarded or even blocked (Figure 3.8a).

Likewise in a configuration composed of a succession of parallel hills there exist situations
for which the air at the level of the crest does not penetrate into the valleys (Figure 3.8b).

b) Isolated Hills:

A variety of complex cloud patterns have been observed on satellite cloud photographs to
occur in the neighbourhood of and to the lee of isolated mountains. One distinctive pattern
that is often observed in the lee of certain islands (e.g. Ian Meyen, Madeira) is reminiscent of
the surface wave pattern behind a ship moving into calm water (- or the related situation of the
flow behind a submerged obstacle in a shallow stream). For this situation the cloud pattern is
confined to a wedge shaped region with the mountain located at the apex (see Fig. 3.27). There
are two types of wave-systems (transverse and diverging waves) that occur either separately or
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Figure 3.8: Blocked situation in an airflow over an infinitely wide mountain ridge (a) and over
a succession of parallel mountain ridges (b).

simultaneously within the wedge region.

These waves are observed when the prevailing vertical stratification is similar to that noted
earlier for two-dimensional trapped lee waves viz. a strongly stable layer (often an inversion)
from approximately 500 to 3000 m in with a nearly neutrally stable layer below and weakly
stable layer above.

The transverse waves are aligned perpendicular to the flow and are more evident in compa-
ratively light wind situations. They are the counterpart for this mountain configuration of the
trapped lee waves discussed earlier.

The other waves type - the diverging wave - are aligned so that their crests meet the incident
flow at an acute angle. The envelope of these crests demarks the outer boundary of the wedge
and can stretch for several hundred kilometers (see Fig.3.27).

In the isolated hill case weak low level stratification with a capping inversion and high
terrain is strong quasi-two dimensional flow around the terrain at low-levels and the occurrence
of complex flow-phenomena, including the possibility of a train of vortices, in the lee.

3.2.2 Major meso-α/β scale mountains

Orographic features of larger (meso-α/β) horizontal dimensions tend to also be associated with
substantially higher elevations. Here we consider such terrain features and devote particular
attention to the nature of the flow response in the neighbourhood of the European Alps.

The main ridge of this mountain chain is aligned approximately WSW-ENE at about 46.5◦ N.
Climatologically the chain is situated downstream of the split in the North-Atlantic jet, and the
prevailing flow at 850 hPa is a comparatively weak WNW airstream. The ridge itself is charac-
terised by a length, width and height of respectively 1000, 200 and 2.5 km. These vertical and
horizontal scales betoken a potential for a significant finite amplitude flow response (F ≥ 1)
and appreciable ageostrophic effects (Ro ≥ 1).

One pointer to such effects is the frequent depiction on surface charts of cross-Alpine pres-
sure gradients that are far in excess of those that prevail over most of the remainder of Europe.
In the near Alpine region these enhanced gradients are usually accompanied by an ’S’ shaped
isobaric distribution aligned across the Alps (See fig.3.93.9b). This pattern is commensurate
with elongated meso-scale high and low pressure pillows located respectively on the windward
and lee slopes. The associated synoptic scale surface pressure field often signifies a split of the
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(a)

(b)

Figure 3.9: Infrared image of a spectacular ’south foehn’-situation as taken by Meteosat-2 on
November 7, 1982 at 6 UTC (a) and the corresponding synoptic surface chart (b). The observed
pressure gradient across the Alps reached a record of 20 hPa causing winds of up to 190 km/h
across the Gottard Pass. While Locarno observed an air temperature of 1◦C with mixed rain
and snow, skies above Zürich were clear with a temperature of 25◦C. (source: EUMETSAT.)

geostrophic flow around the Alps. This indicator of splitting is further emphasized by inspection
of the wind roses compiled for near Alpine radiosonde stations. These indicate, in contrast to
mountain removed stations, a predilection for an along-ridge flow at levels beneath the crest of
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Figure 3.10: HRV image of a spectacular ’north foehn’-situation as taken by Meteosat-8 on
January 21, 2005. Note the stau cloudiness over the Alps extending some 50 km downwind of
the main mountain range (Locarno is overcast with weak precipitation, Lugano is clear). At
Stabio (TI), the arrival of the foehn wind rose the surface temperature from -2.6◦C to above
+13◦C within 24 h. Note the band-clouds in the lee of meso-β/γ-scale hills as the Massif du
Midi and the narrow gap in the clouds along the southern side of the Jura mountains. This gap
is produced by the ’Joran’ or ’Jorat’ wind, a mini-foehn effect. (source: EUMETSAT.)

the Alpine chain.

In the following sub-sections we examine briefly the nature of the response for the disparate
situations when the air upstream is quasi-steady and directed normal to, and tangential to, the
main ridge.

a) Normal incidence:

The atmosphere above the Alpine foreland during periods of flow from the NW-NE quadrant
indicates that the upstream low-level airflow is characterized by

• the forementioned high pressure pillow on the immediate north side,

• substantial channeling/blocking of the airflow within an extensive domain of width ∼
100 − 200 km, and a height comparable to the mean crest height of the Alpine ridge,

• a stable layer capping this modified region.

A striking feature of the flow over the foreland during southerly flow periods (i.e. when it
corresponds to the lee side) is the Foehn with its strong, anomalously warm downslopewind
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Figure 3.11: Alpine cross section at 00 Z and 12 Z on 14 April 1982 of the potential temperature
(left) and the along-ridge wind component.

(a) (b)

Figure 3.12: Cross-section along the alps during a period of northerly flow (a). Time-height
section of the airflow and the accompanying values of h∗ = U/N (b).
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(a) (b)

Figure 3.13: Cross section along the alps during a period of northerly flow (a). Time-height
section of the airflow and the accompanying values of h∗ = U/N (b).

(a) (b)

Figure 3.14: Non-linear numerical simulation for Ro = 1 and F = 1.

regime (see Fig. 3.16). Illustrations are provided of the atmospheric vertical structure that
prevailsin a section across the mountain during such episodes for both the Chinook in the Rockies
(see Fig.3.2.2) as well as South respectively north Foehn in the Alpine region (see Fig.3.9 and
3.11 respectively Fig.3.10). In the former case features of interest are evidence of

• trapped lee waves and an almost-stagnant region downstream,

• longer wavelength features at higher elevations,
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(a)

(b)

Figure 3.15: (a) Cross section of potential temperature field in K over the mountains and
foothills as obtained from analysis of the Queen Air and Sabreliner data on 11 January 1972.
Data above 500 mb are exclusively Sabreliner taken from 1700-2000. data below 500 mb are
primarily Quen Air taken from 1330-1500 MST. Flighttracks are indicated by the dashed lines,
except by crosses in turbulent portions. At this time it is not possible to determine whether the
apparent westward displacement with height of the major features is real or related to the time
difference between the two flights. Windstorm conditions on the ground extend eastward to the
location where the isentropes rise sharply, a few miles east of the origin at the Jefferson County
Airport. (b) Westerly wind component cross section for 11 January 1972.
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• large amplitude features above the terrain (parcel excursion some kilometers) accompanied
by an upstream slope of the phase lines, possible wave-overturning and localised turbulence.

For the Foehn case the descent of the isentropic surfaces to the lee is again evident whereas
the wave activity is somewhat less apparent. To the north there is usually a cold surface layer
and the Foehn air ascends over and denudes this layer. Surface pressure charts display the
forementioned characteristic Foehn trough to the lee.

a) Tangential incidence:

A frequent and climatologically significant feature of the atmosphere during periods when
the geostrophic flow is aligned nearly along the contours of a ridge is the occurrence of a low-level
jet. Regions of occurrence include in addition to the northern slopes of the Alps, the eastern
slopes of the Rockies, the Andes and the East-African highlands (See Fig3.16).

The jet is usually located within or at the top of a substantially mixed planetary boundary
layer (P.B.L). When the jet is land-based it usually exhibits a strong diurnal modulation in
concert with the diurnal changes of the P.B.L. In the Alpine region the jet is closely linked with
the so-called Bise wind.

3.3 Some Theoretical Considerations

Physical insight on the nature of the flow response to orography can be explored utilizing theore-
tical concepts and undertaking numerical simulation or laboratory analogue experiments. How-
ever the sheer variety of orographic profiles (- and concomitant variation in the relevant dimen-
sionless parameters) effectively limits studies to key prototype situations or to some particular
terrain feature that is of special interest.

Here we consider two such prototype configurations: -A ’Witch of Agnesi’ infinite ridge and
a bell-shaped circularly symmetric obstacle. In both cases the orography is assumed immersed
in an incompressible atmosphere that is unbounded above and the incident airstream is taken
to be of uniform flow and stratification (i.e. U and N constant). The nature of the response is
then sought in the parameter space of (Ro,F ). Note that the F → 0 end of this ’lagoon’ is the
linear theory limit of small topographic perturbations (c.f. 0η → 0), and that the lateral shores
correspond to the strongly quasi-geostrophic (R � 1) and the non-rotating (Ro → ∞) limits.
In the following sub-sections an overview is provided of the known features of the response.

3.3.1 Case I: The infinite Ridge

a) Low Topography (F → 0 limit)

The linear wave theory developed earlier. should provide some information relevant to small
amplitude orography and act as a guide and a starting point for the study of other flow config-
urations.

It was shown earlier, that the dispersion relationship takes the form

ω = Uk ±

[

N2K2 + n2f2

δK2 + n2

]1/2

with K2 = (k2 + l2) (3.1)
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(a)

(b)

Figure 3.16: (a) Monthly mean airflow at 3000 ft (1 km) in July. Bold arrows: Major streamline,
axis of maximum flow. Solid lines: Isotachs, at 5 kt intervals and dashed lines: Axis of maximum
wind. (b) Cross section of mean meridional flow at the Equator in July.
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∞

Figure 3.17: Flow response to prototype problem: Ridge orography; Incompressible, inviscid
fluid on an f -plane; Witch of Agnesi Terrain; Uniformly structured incident flow (N and U
constant); Appropriate parameterspace: Ro and F .

It follows that for a steady response

Uk = ±

[

N2K2 + n2f2

δK2 + n2

]1/2

(3.2)

and hence

n2 = K2

[

N2 − δU2k2

U2k2 − f2

]

(3.3)

For N > f , vertical propagation is confined to the band (N/U) > k > (f/U), i.e. (2πU/N) <
L < (2πU/f)

Furthermore for the steady state flow response the components of the group velocity are
given by,

wg =
∂ω

∂n
= Ukn ·

1 − f2

U2k2

δK2 − f2
, (3.4)

ug =
∂ω

∂k
= U [1 − ∆], (3.5)

vg =
∂ω

∂l
= U

1

k
∆, (3.6)

where

∆ =

{

(

N
U

)2
− δk2

}

δK2 + n2
, and (δK2 + n2) = K2 ·

N2 − δf2

U2k2 − f2
(3.7)

The perturbing effect of the mountain upon an incident airstream can be interpreted as
a source for wave energy. Hence, for a terrain feature located near (x, y, z) = (0, 0, 0), then
outward radiation of wave energy implies wG > 0 for z > 0, and vG > 0 (< 0) for y > 0 (< 0).
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Figure 3.18: Vertical propagation mode as a function of horizontal wavenumber.

It follows that (kn) > 0 for a wave mode in the band [f/U,N/U ]. Now the lines of constant
phase in an (x, z) plane is given by

z = −

(

k

n

)

x +

(

Φc

n

)

(3.8)

Thus in association with vertical energy propagation {with (k, n) > 0} the lines of constant
phase will slope upstream with height. (This result implies an asymmetry of flow up and
downstream of the mountain peak, and hence there is the possibility of a wave-drag effect on
the mountain. These inferences are illustrated in the figure below.

Note from (2.12),

∂

∂x

[

Uu′ +
p′

ρ0

]

= fv′ (3.9)

and thus if
∥

∥

∥

Uu′

L

∥

∥

∥

‖fv′‖
� 1, (3.10)

then
u′ ≈ (−p′) (3.11)

i.e. flow retardation accompanied by high pressure.

The direction of energy propagation (i.e. the ray path) in the (x, y) plane is given by

tan(α) =
wG

uG
(3.12)

where α is the inclination of the ray path to the horizontal. Use of (3.4 to 3.6) and (3.9) indicates
the following:

The foregoing inferences regarding the nature of the response have been based purely on
group velocity concepts. A formal development of the solution for meso-β/γ scale (f ≡ 0) flow
of an uniform stream of constant stratification over two-dimensional sinusoidal terrain is given
in the Appendix. The two forms of solution for k > (N/U), k < (N/U) are shown in Fig.3.3.1,
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Figure 3.19: Schematic of flow over sinusoidal terrain and vertical energy propagation

Figure 3.20: Refined vertical energy propagation modes in the range of vertical propagating
waves.

and the main characteristics of the solutions are:

For case (a) the phase lines are vertical and the disturbance decay with height.

For case (b) the phase lines tilt backward into the mean wind and propagate energy away
from the orography. In this case the flow is asymmetric with low speed and high pressure on
the windward side and high speed and low pressure on the leeward side. It follows that there is
a pressure drag on the ridges.

Note also that an arbitrary two-dimensional orographic profile can be Fourier decomposed
into contributions of the form {eikx}. The flow response to such a profile can then be evalu-
ated by treating each ’k’ component as in the Appendix and then synthesizing the components.
Illustrations of the result of such a procedure are shown in Fig.3.22. Orography characterised
by a small half width L � (2πU)/N produces a predominantly evanescent response, whilst
orography with (2πU)/N � L � (2πU)/f yields a hydrostatic wave response associated with
quasi-vertical energy ray path. In the latter case the flow asymmetry is again evident.

These theoretical examples (see also Fig. 3.23 and 3.24) are illuminating and are consistent
with some of the observational features.

b) High Topography of Intermediate Width (F -finite; Ro � 1 limit)

The intermediate width is taken to refer to scales of 30−100 km so that the wave response is
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Figure 3.21: The steady inviscid flow over two-dimensional sinusoidal topography. (a) Little or
no influence of buoyancy, Uk > N . the disturbance decays upward with no phase line tilt. (b)
Strong buoyancy effects, Uk < N . The disturbance amplitude is constant with height while the
lines of constant phase tilt strongly upstream.

Figure 3.22: Linear theory results for flow over a two-dimensional ridge of an incident airstream
of uniform U and N. (a) Ro � 1. and (b) Ro � 1
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Figure 3.23: Simulation of severe downslope windstorm over Colorado Rockies using non-linear,
non-hydrostatic theory (Peltier and Clark, 1979)

essentially hydrostatic in the F → 0 limit. Now the finite amplitude of the orography induces
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Figure 3.24: ?Same as figure 3.23 but for changed boundary conditions?

a non-linear flow response. Theoretical studies and numerical model simulations reveal several
’transition’ features:

• as F increases the wave amplitude and vertical flux of momentum increases until the wave
attains an overturning amplitude at an elevated location for F ∼ 0.8. In the more general
case the value of F required for overturning is a function of the ridge shape and the
upstream profile. At and beyond the overturning amplitude the flow develops a quiet zone
between the overturning level and a surface layer of considerably enhanced downslope and
lee-side winds with an accompanying large increase in the pressure-drag. These features
have some of the characteristics of a hydraulic jump phenomenon.

• with a further increase of F ∼ 1.0 − 1.3 the flow upstream of the crest is retarded to
the point where flow reversal and upstream blocking occurs. This layer has a depth
∼ (η −U/N) and extends far-upstream. Some insight on these results can be gained from
noting that:

i) The parameter F , viewed as a measure of the ratio of the energy required to lift a
parcel through a height h in an uniformly stratified environment to the kinetic energy
of the incident flow, implies that a crude estimate of the depth (HB) of blocked flow
is HB ∼ (η − U/N).
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ii) For two dimensional, hydrostatic, non-rotating flow the dispersion relationship of linear
wave theory is given by ω = Uk ± N · k/n

and ω = 0

for either U = N/n ⇒ uG = U − N/n
or k = 0 ⇒ vG = U ± N/n

wG = 0

The second situation implies a modification of the mean flow by horizontal columnar
energy propagation. This modification is both up and downstream if (N/η) > U and
it is probable that the vertical wave number n would scale with the terrain height (say
n ∼ π/4h) and thus an upstream effect might be anticipated for F ≥ 4/3.

iii) Hydraulic theory of shallow water flow (see later) appears to offer an useful conceptual
framework for some aspects of the flow response (c.f. the upstream propagation ’bore’,
the retreating lee-side hydraulic jump).

c) High Topography of Larger Width (F -finite; Ro � 1 limit)

The linear wave theory for the Ro � 1 domain is essentially quasi-geostrophic. An indication
of the response for finite F values can be obtained by considering semi-geostrophic flow (i.e.
geostrophy of only the along-ridge flow component) over isentropic terrain. The amplitude of
the evanescent response can be shown to be proportional to (1 −Ro · F )−1 with the isentropes
fusing onto the crest as Ro · F → 1. Again for more general configurations the critical Ro · F
value is dependent upon the shape of the orography.

d) The ’inner-Lagoon’ (F ≥ 1;Ro ∼ 0.5 − 5)

Simulations undertaken in this domain indicate that the low-level blocked region extends
upstream only a finite width - order of a Rossby radius of deformation based upon the crest
height (Nh/f) The almost stagnant region is surmounted by a pseudo-semi-geostrophic regime
with air accelerating to the crest and a strongly ageostrophic lee side regime with large ampli-
tude or breaking waves.

Figure 3.25: Schematic of ’inner lagoon’

3.3.2 Case II: Circular Orography

a) Low Topography (F → 0)

Some understanding of the wave response in the wake of an isolated hill also be obtained with
linear theory. It was noted earlier that two forms of waves are frequently observed - transverse
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and diverging waves. The former can be viewed as the counterpart for this flow configuration of
the trapped lee waves discussed earlier.

An understanding of the divergent wave type is sought in terms of phase and group velocity
considerations of hydrostatic three dimensional gravity waves (- the counterpart of the purely
vertical propagating modes in the ridge situation). For these waves the appropriate dispersion
relationship is (2.15b) with (k2 + l2) � n2

ω̂2 = N2 k2 + l2

n2
(3.13)

with the phase given by

Φ = kx + ly + nz − ωt. (3.14)

It follows that the frequency is given by the equation

ω = Uk ± N
1

n
(k2 + l2)1/2 (3.15)

and stationary waves (Up ≡ 0) must satisfy the relation

U = N
(k2 + l2)1/2

nk
(3.16)

The component group velocities are given by

uG = U − N
(k2+l2)1/2

(k/n) = U
l2

k2 + l2
(3.17)

vG = U − N
(k2+l2)1/2

(l/n) = −U
l · k

k2 + l2
(3.18)

wG = U − N(k2+l2)1/2

(n2) =
U2k2

N · (k2 + l2)1/2
(3.19)

Thus we have downstream and upward vertical energy propagation, associated with positive
(negative) values of vG for wavenumber (l) assuming negative (positive) values. From (3.14) we
conclude that in the horizontal and vertical the phase lines will radiate outward and downstream
from the source.

The ray paths for the energy can be derived from (3.10) and the coordinates (x∗, y∗, z∗) of
the paths will be given by,

z∗

x∗
= wG

uG
=

U

N

(

k

l

)2

(k2 + l2)1/2 (3.20)

y∗

x∗
= vG

uG
= −

k

l
(3.21)

z∗

y∗
= wG

vG
= −

U

N

(

k

l

)

(k2 + l2)1/2 (3.22)

Equations (3.20-3.22) can be combined to show that the wave energy will be concentrated
near the parabola defined by

y∗2 =
U

N

1

(k2 + l2)1/2
z∗x∗ (3.23)
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The dominant wave mode for a symmetric mound will be such that

(k2 + l2)1/2 ≈
1

a
(3.24)

where a is the scale width. In this case

y∗2 =
N

U
(a)z∗x∗ (3.25)

This semi-qualitatively derived formula is in reasonable accord with the observed diverging
cloud pattern.

Figure 3.26: Schematic lee-wave train of clouds past a circular mound.

In addition to the foregoing general approach based upon group velocity considerations it is
again possible, as for the ridge case, to consider the response of a particular localized obstacle.
The procedure now involves the decomposition of the terrain specification into a double Fourier
series, solving the three-dimensional wave problem for an arbitrary doubly sinusoidal bottom
boundary followed by a Fourier synthesis of the wave solutions to obtain the real-space solu-
tion. The resulting patterns confirm the occurrence of the V-shaped wave pattern and show a
downslope regime and lee-side convergence for wide range of Ro values. Also a mountain-bound
anticyclone induced by vortex compression is evident for the Ro ≥ 1 region.

b) High Topography of Intermediate Width (F − finite; Ro � 1 limit)

Very stable stratification (F � 1) acts to suppress vertical displacements of fluid parcels
and serves to induce a symmetrical ’almost’ horizontal flow around the topography. In such a
configuration conventional viscous boundary effects would help induce a separation of the flow
in the boundary layer, the formation of a wake and the shedding to the lee of vortices with
quasi-vertical axes. For F ≤ 1 the limited lateral width inhibits somewhat the amplitude of
the hydrostatic buoyancy wave and the occurrence of wave overturning. For F ≥ 1 there is
some evidence of upstream blocking and of the development of convoluted lee vortices even in
the absence of viscous effects.

c) High Topography of Larger Width (F − finite; Ro � 1 limit)
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Figure 3.27: Ship-wave-shaped wave clouds induces by Peter I Island, (bottom left corner) off
West Antarctica, perspective from Satellite Terra on March 28, 2004.

The geostrophic and semi-geostrophic flow response to isentropic terrain corresponds to a
mountain bound anticyclone whose amplitude again increases with RoF . For F > 1 the
strength of this vortex can overcome the strength of the incident flow and a Taylor cap - a
conical region of cut-off, closed, streamlines - forms over the elevated terrain. Fusion of the
isentropes onto the crest occurs as RoF → 1/2.

In the lagoon domain of RoF > 1/2 with F � 1 (and hence Ro � 1) there is some in-
dication that, as for the Ro � 1 situation, the flow splits around the terrain. Now however
the pattern is asymmetric with strong ascent on the right flank (looking downstream) and the
reverse on the left flank.

d) The ’Inner Lagoon’

As in the infinite-ridge case some flow simulations indicate that region exhibits features akin
to both the Ro � 1 and the Ro � 1 regimes. However there are gaps in our knowledge and
understanding of this part of the ’Lagoon’.


